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ABSTRACT

This paper deals with the diffraction of time-harmonic
electromagnetic radiation by perfectly conducting obstacles
immersed in an inhomogeneous, anisotropic, conducting
medium. A mathematical formulation of the problem is
presented which is applicable to obstacles of arbitrary shape
and to a very general class of media, and the existence,
uniqueness and continuous dependence on the data of the

solution is demonstrated.
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THE STEADY-STATE DIFFRACTION OF ELECTROMAGNETIC RADIATION BY AN
OBSTACLE IN AN INHOMOGENEOUS ANISOTROPIC CONDUCTING MEDIUM

Calvin H. Wilcox

§l. Introduction., This paper deals with the diffraction of time~harmonic
electromagnetic radiation by perfectly conducting obstacles immersed in an
inhomogeneous, anisotropic, conducting medium. A mathematical formulation
of the problem is presented which is applicable to obstacles of arbitrary shape
and to a very general class of media, and the existence, uniqueness and
continuous dependence on the data of the solution i8 demonstrated.

Electromagnetic fields are represented by pairs of vector fields, Hx, t)
(the electric field) and H(x, t) (the magnetic field), which are described here
by their {real-valued) components Ej(x, n, Hj (x,t) (j =1, 2, 3) relative to
a fixed rectangular coordinate system. The symbol x = (xl, X5 x3) denotes a
point in Euclidean space R3 and t is a time coordinate. Time-harmonic

electromagnetic fields have the form

(1.1) Bj(x, t) =Re {e'-lmt Ej (%)}, Hj (x,t) = Re {e"i""t Hj(x)}

where w is a real frequency and

1 2 .l 2
Ej(x) = Ej(x) + iEj(x), Hj(x) = Hj(x) + 1I-Ij (x)

Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin under Contract No.: DA-11-022-ORD-2059.
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are the complex-valued components of vector fields E(x), H(x) which are
independent of t . Maxwell's equations for time=harmonic fields in an
inhomogeneous, anisotropic, conducting medium filling @ domain @ C R3 have

the form

(VX H), = (e, 40 4] E = ],

(1.2) inQ .

(VXE) + lop, H =K,

Here the summation convention is used (repeated indices are summed from 1 to
3), (VxH)1 = 8H3/8x‘2 - 6H2/8x3, etc. The functions ik ° ejk(x) ,

Mk = pjk(x) and o ik =0 jk(x) are real-valued and represent the components of
the dielectric, magnetic permeability, and electric conductivity tensors,
respectively. ]j and Kj are complex—~valued and represent the electric and

magnetic current densities.

The quadratic form
1
-Z.(ij(x) Ej(x) t) Ek(xat) + “'jk(x) Hj(X, t) Hk(x9 t))

defines the energy density for (real-valued) solutions of Maxweil'.. equations
in an inhomogeneous, anisotropic medium. Hence, the tensors e ik and Mk

are assumed to be positive definite. The conductivity tensor o must also be

ik
positive definite if the medium is to be dissipative (energy is absorbed, rather

than created, in it).
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A perfect conductor (of electricity) is characterized by the property that
the tangential component of the electric field vanishes on its surface. Thus,
if a perfectly conducting obstacle oC R3 is immersed in a medium occupying

ﬂ=R3-O then
(1.3) NXE=0 on aQ ,

where N 1is a normal vector on 9 .
The diffraction problem considered here (the steady-state diffraction problem)
asks for the time~harmonic fields (1.1) generated by prescribed time~harmonic

electric and magnetic current densities
1(x,1) = Re {e * 7)), K(x,t) = Re {7 K(x))

acting in the presence of a prescribed obstacle O . Maxwell's equations (1. 2)
and the boundary condition (1.3) are necessary conditions on the solution.
However, they do not, in general, determine the solution uniquely. Indeed, if
the medium is homogeneous and isotropic and 9Q has sharp edges it i1s known
that (1. 3) must be supplemented by an "edge condition” to obtain uniqueness
[1]. Moreover, if Q@ is unbounded a "condition at infinity" is needed to obtain
uniqueness [5, 7] . A complete formulation of the steady-state diffraction
problem is given below in §2 . The discussion in the remainder of this section
is intended to motivate the final formulation.

The time=-average of the energy density for a time-harmonic electromagnetic

field is
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where Ek = Bll‘ - u:ﬁ is the complex conjugate of Ek’ etc. Most edge conditions
have been based on the physical principle that the energy in bounded portion

of space should finite; i.e.,

(1. 4) Ren'r[\c (e By E +uy B H Jdx <o (dx = dx dx, dx )

for each bounded set CC R> [3, 4] . This condition eliminates the possibility
that point-or line-sources of energy might reside in a sharp edge. (These
would clearly lead to non=-uniqueness unless their distribution and strengths
were specified.) For homogeneous, isotropic media, (1. 4) has been used to
derive restrictions on the singularities in E and H that can occur at an edge.
The latter were then used to prove the uniqueness of the solution [3]. In this
paper (1. 4) is used directly in the formulation of the problem and in the existence
and uniqueness theorems.

The Silver-Muller radiation condition has been used to obtain uniqueness
in the steady-state diffraction problem for bounded obstacles in a homogeneous,
isotropic medium [5, 6, 8] . It is a condition which guarantees that the solution
behaves like an "outgoing wave" at large distances from the obstacle. The form
of the condition depends strongly on the form of Maxwell's equations for
homogeneous, isotropic media and no such conditions are known for inhomogeneous

or anisotropic media, However, the author has shown that for homogeneous,
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isotropic dissipative media (i.e.,, media with a positive electrical conductivity)
the Silver-Miiller radiation cordition implies that the field components tend to

zero exponentially at infinity [8, p. 120]. In particular, it follows that

(1. 5) Re +p.ijj§k)dx<oo

S g B E
for R sufficiently large. This is meaningful for inhomogeneous, anisotropic
media. Moreover, it is plausible that in dissipative media there is an energy
balance between the energy introduced by the source fields J and K and the
energy dissipated in the medium, so that the time-average energy is finite,
Conditions (l.4) and (l.5) are used as "edge condition" and "condition
at infinity" below. They can be combined conveniently into the single condition

that the total {time-average) energy in the medium is finite:

(1.6) Re_s{(ejkEjEk-l-pk j k)dx<°° .
Notice that

= 1201 2 1.2
(1.7) E B, = (E + 1E)(E, 1Ek)-(EE +EEk)+i(E k -EE)

so that (1.6) can also be written

(1.8) f{ejk(EE + E “‘k“**jk(H H;+H H )} dx<o
Q
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§2. Formulation of the Diffraction Problem. The tensors e 5k m ik and

o are assumed to have the following properties.

jk
(2.1) e jk(x), p.jk(x) and o jk(x) are bounded, Lebesgue-neasurable
functions of x ¢, and

(2.2) € jk(x), pjk(x) and o jk(x) are uniformly positive definite in Q; i.e.,

there exist positive constants € M and o m such that

008 6 Z e T80, w008 8, 2 1615 o 08 8, 2 o (e (086

for all xe¢ Q and all real gj ([g[2 = glz +§: + g";)
Conditions (2.1) and (2.2) imply that there exist finite constants e M’
and o,, such

MM M

(2:3) € (08,6 < e lel’, w08 8 <y lel’, 0 016 8 <o (e (00 )

for all xe¢ Q and all real ¢ j The parts of conditions (2.1) and (2.2) applying

to ‘jk

equivalent to the conditions

and Mk imply that the conditions (2.2) and (2.3) on o,

a;
jk re

or l6l® <o g 5, <ol lel® .

However, the first form proves to be more convenient.

The tensors ¢ i’ p.jk and ‘Tjk are not assumed to be symmetric. However,

(2.1), (2.2) and (2.3) imply that their antisymmetric parts are bounded relative
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to their symmetric parts; i.e., there exist finite constants a such that

4

l(‘ jk(x) - ‘kj(x” §j nkl <a ‘jk(x)(gj gk + "'lj ﬂk)
(28) {0 =y g md < 3 (8 8+ m)

o ) = o N ] <20 (8 6+ mymy)

\

for all xe¢Q and allreal § i and n y . Al] the results given below require,
for their proofs, that (2.4) should hold with sufficiently small values of a ,

namely

g

o
S 11} Aﬁ———-
O-M o':l + 4@2 + Zlml

The formulation of the diffraction problem given below makes use of several

(2.5) a<

[N L

classes of vector fields on 2 . To define them let
Lz(n) ={A: A(x) is Lebesgue~measurable on R, é lA(x)Iz dx < o}

denote the Lebesgue class of square-integrable, complex-valued vector fields on
2 . Here A(x)= Al(x) + iAz(x) has complex-valued components

l\j (x) = A}(x) + iAjz(x) and

(A2 = 180 + 1850012 = (Al(x) + 182 (0) (A1) = 122020 = [a(a)12 + [A2(0)]
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Notice that, because of (2.1), (2.2) and (2.3), a(Lebesgue-measurable)
electromagnetic field has finite energy if and only if E ¢ Lz(n) and H e Lz(ﬂ) .
The class of vector fields A e Lz(n; for which VXA e L2 () is needed in the

formulation of the diffraction problem given below. Its definition is motivated

by the identity

(2.6) JA-Vxodx-fo: VxAdx=f NxA. @ds ,
Q Q an

which is valid if A and ¢ are continuously differentiable and 8Q is sufficiently

smooth,

D on, Let Ae Lz(n) . Then VXA exists and equals B ¢ Lz(n) —)

JA-Ux @dx= [B. @dx forall @¢ Co(a) .
Q Q 0

(-]
Here Co(ﬂ) denotes the class of vector fields on Q which have continuous
derivatives of all orders and vanish outside a compact subsetof @ . VXA is

unique, if it exists, because C: () is dense in Lz(ﬂ) . The notations
LZ(Vx; Q) ={A: Aand VXA are in Lz(ﬂ)}
and

0
L, (Vx; @) = L,(Vx; @) ~ {A: _‘{A « VXBdx= éa + VxAdx for all Be L,(Vx; 2)}
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are used below, Notice that "A ¢ Lg (Vx; Q)" generalizes the boundary condition
"NXA=0 on aQ" . Indeed, if A and VXA are continuous in the closure

of @ and 9% is smooth then A ¢ Lg(Vx;Q) implies

SNxA. @ds =0
193
for all & which are continuously differentiable in the closure of €, and it
follows that N XA =0 on 8Q .
A formulation of the diffraction problem which is applicable to arbitrary

domains £, and media satisfying (2.1} and (2.2), is contained in the

Definition, Fields E and H define a strict solution of the steady-state

diffraction problem for the domain 2 and source fields J e LZ(Q) and
Ke LZ(Q)(==)E € Lg (Vx;9), He LZ(Vx; ) and Maxwell's equations (1.2) hold
almost everywhere in .

Notice that the generalized boundary condition, together with the combined
"edge condition" and “condition at infinity" (1. 6), are contained in the definitions

of Lg(Vx; Q) and L(Vx;Q) .
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§3. The Energy Inequality. The fields defined by

Ij = (VX H)j - (iwejk + Ujk) Ek ,
(3.1)

K =(VXE) + o, H

are in LZ(SZ) for every E e Lg(Vx; Q) and He Lz(Vx; Q), by(2.l1), Thus every

pair Ee Lg (Vx;9), He LZ(Vx: Q) defines a strict solution of the diffraction

* problem, and the correspondence E, H =+ J, K defines a linear operator on

LZ (2) x Lz(n), with domain Lg(Vx; Q) X Lz(Vx; Q) . The main theorem in this
paper is an "a priori" estimate which implies that this operator is bounded. It

will be called

Theorem 1 (The Energy Inequality). Let w(#0) be a real number and let

and ¢, satisfies (2.1), (2.2), (2.4) and (2.5) . Then there

ik? Mk ik

exists a constant C, depending on w and the bounds for "k’ p.jk and cr),k
)

only, such that
(3.2) Re [(e BB, +u, HE)ax<C [(I%+ K% ax

o Kk Tk -
for all Ee Lg(Vx;n), He LZ(Vx;Q), with J and K defined by (3.1} . Indeed,
(3.2) holds with

2 2

o+ 4w
m

(3. 3) C=4 Max(l/em l/p.m) >

2 2
W (o‘m- 8waoM- 4a o-M)

It is shown below that this number is positive when (2.5) holds. Theoren |

and (2.2) imply

T s,
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Corollary 1. Under the samc hypotheses,

(3.4) JUE®+ [HPax < o [ %+ [k[% ax
Q 193

where Cl =C Max(l/em, l/p.m) and C is given by (3.3} .

The proof of Theorem 1 is based on two lemmas concerning the bilinear form
(3.5) I(E,H) = [(E,T, -H K)ax
Q J7) ) )

which may be stated as follows,
Lemma 1, Under the hypotheses of Theorem 1, there exists a positive constant

m, depending on w and the bounds for €52 ik and Tk only, such that

(3.6) m Re 'S{(ijEjEk +p.ijjITIk)dx§_ [1(E, H)|

for all E e Lg (Vx;9), HeLl(Vx0) . Indeed, (3.6) holds with

2 2 2
2 2y 8lelacy, -a"ay
(3‘7) m =w 2 2 .
o+ 4w
m

Lemma 2. Under the same hypotheses

— — - - 1 i
(3.8) li(g,m)l S_ZMax(I/N/em, 1/~/me)(Re_-éejk}:j Ek +u H, dex)=(£I1[Z+ [kl 2dxpE.
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Lemmas ] and 2 imply Theorem 1 with C = 4 Max(1/e m? llpm)/ m2 which.
with (3.7), gives (3.3) .

Proof of Lemma 1. Substituting (3.1) in (3.5) gives

1(E, H) =‘{{Ej(VXH)j-Hj(Vx E)t ey BB -0 EE ~top) B H}dx .

0
The sum of the first two integrals vanishes because E ¢ Lz(Vx; Q), He Lz(Vx; Q) .

Thus
I{E,H) = é{(-o'jk+iwejk) E Ey mpij H, }ax .
If
g =gE ZE £. =E2E - E B2
ik jk j k? “ik jk j Yk ?
I e
k H}Hk H H , Hy=H H -HH ,

then (see (1.7))

- - + - - - + -
(3.9) EE =E +1E,, HE =H +1H

and therefore

I(E, H) = f(o'jk Ej +we By + ijkij)dx-ié(ajk E - we, B jk +ony jk)dx :

# A



#388 ~13=

Thus

l1(E, 1)| -(fcrjk Ej dx) +2wfo'jk jkdx(ﬁjk jk+p.ijjkdx)+w (fzjk jk+p.ij dx)?

+ - 2 + 02
+(fo'jk jkctx) wao'jk jkdx(éejkEjk-pijjkdwa (gejkEjk-p.ijJkdx) .

Dropping the underlined terms gives the inequality

1{E, )| >(fo'jk jkdx) +2wf¢jk jkdxfa-jkEjkdxi-Zw fpijjkdxfo-jkEjkdx

(3.10) - + 2 + +,..2
- 2 E,dx H dx+w ( Je B, -p, H dx)
Zw"{cjk jkdxf‘jk Ejdx+ "’-‘{"jk ik é“jk ik éjk ik " Hkik

Now, by (2.4)

2.1 1 24 %y .
lejk(r:j E, - EJ = I(e k" By Ekl < aejk(E Ek k) ;
i.e.,
+ + - +
ljk jk| jknjk, or 'a‘jkEjk <—‘jkEjk<—a‘jkEjk .

When multiplied by w and integrated over Q this gives

-alwléejkE _wgejkEjkdx< a[o)lfejk jk .
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Moreover, (2.4) implies exactly similar results for Mok and Tk Combining

these with (3,10} gives

2 + + 2 + + 8
IKE, H)| >(f¢jk i OX -4leaj.rjk jkdX(fejkEjk+p.ijjkdx)+w (éejknjk-pijjkdx) .

Eliminating o, by means of (2.2) and (2.3) then gives

ik

(3.1 II(B,H)lzgo-rzn(.‘];ejkE;gx)z-4|w[ao'Mf k jkdx(fejk NI *ax)

P (fejk i p.ij x)

Notice that, by (3.9},

Ref(tjk jzk+p'jk ij)dx-f(ejk jk+pjkﬁjk)dx .

Hence (3.6) is equivalent to

+ .2
e, I >m (fcjk Ejet iy Hyy dx)
Thus if

a= f‘jk jkdx p= fp'ijjkdx ’

then (3.6) follows from (3.1l1) and the inequality

(3.12) o'rznaz-4[«:[ao-Ma(ai-ﬁ)+w2(¢'ﬂ)22mz(a+p)z .
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The proof of Lemma 1 will be completed by showing that (3.12) holds for all

real a and p when m is givenby (3.7) . Indeed, (3.12) is equivalent to

(o-an-Zleéi- wz - mz)az-?.([wlé+wz+m2)aﬁ+(wz-mz)ﬁzz_'o, 6 = Zaa-M .
This is true for all o and B if and only if
(3.13) cfn-zlw[uwz-ngo

and the discriminant

(cfn - 2] 6+0” -mA) (W -m?) = (lul 6+ o® + mP 20 .

The last inequality is equivalent to
(3.14) (c2m-4lwls-52)mz-(¢i+ mz)ngo .
This has positive solutions mz provided

£(s) = 0'; - 4wl & - 8 =cfn+ a? - (54 2[ul)2 >0 ;

i.e., provided & lies between 0 and the larger root of £(§) =0 :
2

[+
m
0<6=2a¢M<-Zle+Jci+4w2=J—2———z .
o+ + 2]l

This inequality is equivalent to (2.5) . Assuming it holds, (3.14) has solutions

2
2 zcm-4lw]a—52
0<m <w 3 3 , 5=2a°-M .
o'm+4w
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Conversely, (3.14) implies (3.12) provided (3.13) holds, Now, if m’ has

its largest allowable value (3.7) ,

(cr2 + sz - Jo] 6)2
m >0

b
a'2 + 4w2
m

0‘2 'Zlu(6+mz-m =
m

because
2
2 2
[ 43
m 0'm+2(.0

< o
J{'ﬂ F 0 + 2l Lo

§ <

This completes the proof of Lemma l .

Proof of Lemma 2, Notice that, by (2.2},

2 _ (g2, g2 L, 2, 1 gt

[6l” = [E7"+ [E°]"< < (EE+E Ek).. e B -
m

Thus

IXE, H)| = l{z(njfj -Hjxj)dxl <_£ lzjyjldu glﬁjledx

i
2

< [lElax+ [l ax < (flePan? (S ants (Sl e fIKIZ o
Q Q Q Q Q Q

1
2

< (—-f ik jkdx) (fmzd")z H“‘fﬂ dX)%(fIKlde)
Q

< -1-(f skEsk *“ijkd")z(fmz" K% ax)%+ -=-(f‘;k ;k"#ij;kdX)’(flIlz+lKizdx)i
'\/:n: “m Q
1
< 2 Max(1/Ne_, 1/ )(fejk MR ijdx)z (flﬂz+ K% ax)?

This is equivalent to (3.8), and proves Lemma 2.
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§4. The Fundamental Theorems. Let E, H and E', H' be strict solutions
of the diffraction problem corresponding to source fields J, K and J', K* ,
respectively. Then the differences E - E', H - H' define a strict solution with
source fields J~J', K =K', because Maxwell's equations (l.2) are linear.
Hence, Corollary 1 implies

Corollary 2. Under the hypotheses of Theorem I,

(4.1 IE-e 1%+ Iu - P <ol -2+ Ik-xlh

where [l +++ [ denotes the LZ(Q) norm.

Corollary 2 asserts the continuous dependence of strict solutions on their
"data", the source fields J, K in Lz(n) . An immediate consequence is

Corollary 3 (The Uniqueness Theorem), The diffraction problem has at most
one strict solution corresponding to data J and K in Lz(n) .

Indeed, if E, H and E', H' are strict solutions with the same data J, K
then (4.1) with J' =], K'=K implies E'=E, H'= . Corollary 2 also plays
a key role in the proof of

Theorem 2 (The Existence Theorem). Let 2 be an arbitrary domain in R3 ,

let w(# 0) be areal number, and let ¢ and o,

sk Mk ik
{2.4) and (2.5). Then the coresponding steady-state diffraction problem has a

satisfy (2.1), (2.2),

(unique} strict solution for every pair of sowrce fields J and K in LZ(Q) .

The proof makes use of the following (apparently} weaker notion of solution,
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Definjtion. Fields E, H define a solution with finite energy of the

steady~-state diffraction problem with source fields J and K in LZ(Q) &3 E and

H are in LZ(Q) (i. e., the electromagnetic field has finite energy) and

(

H((VX &), -1i .E & =~ . E, -] &.}dx =0
é{ (VX @) = doey B @y -0 B @y - @ }dx ’

(4.2) ¢

E(VX¥) +iop,  H ¥ -K ¥ }dx=0
's{{j( i+ dow B ) ¥y ’

k

!
for every & e Lg(Vx; Q) and T« LZ(Vx; Q)

The usefulness of this notion stems from

Lemma 3. Fields E, H define a solution with finite energy & E, H define
a strict solution.

Proof. (The implication "==> ") Note that Cog (2)C Lg(Vx; Q) C L,(Vx; Q)

Hence, identities (4.2) imply

E to +]j)¢jdx,

ik

éH‘Vx&dx:f(ime i B

Q

and
E-VXW¥dx = ~i H +K)¥. d
J J oy B+ KD, ax

forall ¢ and ¥ in Cg(f), where the fields i B, +o E + ], and

ik k
iijk H + K are in LZ(Q) . This implies (i) VX H and VXE. exist in LZ(Q)

and (ii) Maxwell's equations (l.2) hold almost everywhere in Q . In particular
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E and H arein LZ(Vx; Q) . Finally, the second of the identities (4.2),

with KJ. = (VXE)J. + 1w“jk Hk’ gives
f{Ej(Vx ¥), - (VXE) ¥ }dx = 0 for all ¥ e L(Vx;@) ;
Q

i.e., Ece Lg(Vx; Q) . Thus E, H defines a strict solution.
(The implication "¢&=") Multiply the first of Maxwell's equations (l.2) by

D e Lg(Vx; Q) and integrate over Q . Then the term

f{VxH), @ dx = [H(VX @) dx

because ® e Lg(Vx; Q) and He LZ(Vx; Q) . This gives the first of identities
(4.2) and the second follows by a similar argument.,
Maxwell's equations (l.2) determine a linear operator A on the Hilbert

space LZ(Q) X Lz(ﬂ) , Wwith domain
D(A) = Lf,_’(Vx; Q) X L(Vx;9)
defined by A(A, B) =(7J, K) where

Ij = (VXB)j - (iwejk + o'jk)Ak

(4.3) (A, B) € D(4) .

Ky = (VXA + lop, B
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Corollary 1 implies that A is one-~to~one on D{A), and that A-1 is

bounded: [IA, Bl < G, [a(A, B)ll, where [a, BI% = [al%+ IBl® is the norm in
L@ X L () .

Theorem 2 is equivalent to the assertion that R(A), therange of A, is
equal to LZ(Q) X LZ(Q) . This will be established by showing that (i) R(A) is
dense in LZ(Q) X LZ(Q) and (ii) R(A) is closed in LZ(Q) X LZ(.Q) . The first
assertion is called )

Theorem 3. Under the hypotheses of Theorem 2,

R(A) = L)X Ly(Q) ,

where the bar denotes closure in LZ(Q) X LZ(Q) .

Proof. R(A) is a closed linear subspace and
L(@) XLy(@) =R(A) @ N,

by a standard theorem on Hilbert space [2, p. 25] . Hence, it is sufficient to
show that if E, H ¢ R(A) is orthogonal to R(A) in LZ(Q)X LZ(Q) then

E=H=0 . Now E, H_| R(A) means

f(Ejfj + H, l_(j)dx =0 forall Ae Lg(Vx;ﬂ), Be L(VX;0) .
Q

Combine this identity with Maxwell's equations (4.3), and take first

’

A=® with e Lg(Vx;Q), B=0
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and second

A=0, B=¥ with Ve L(Vx9) .
This gives the pair of identities

{z{Ej(iwejk-cjk)Qki- Hj(VX tb)j}dx=0 ,
é{Ej(VX ¥}, - top, H ¥ }ax =0 ,

for all e Lg(Vx; Q), Ve LZ(Vx; ) . These identities state that E, H is a
solution with finite energy of a modified diffraction problem (the adjoint problem),
with -w for w,

for ¢ and source fields J=K=0 ,

ekj’ ijs o-kj jk? P'jk’ o'jk’
But, the conditions for the validity of Theorem 1 clearly imply the same conditions
for the modified problem. Thus, E, H is a strict solution of the modified problem
(by Lemma 3) with source fields J =K = 0 and therefore E = H = 0 by Theorem l.

This proves Theorem 3.

Froof of Theorem 2. Let Je Lz(n) , Ke Lz(ﬂ) . Then, by Theorem 3, there
exist sequences of fields E" e Lg(Vx; Q), H e Lz(Vx; Q) whose source fields
]’n, Kn converge to J, K in Lz(n) X Lz(n) « Applying Corollary 2 with E = En ’

m, H =H" gives

H=H", E'=E
IE" - E™[%+ [8" - ™% < o (™ - ™% + 18" - k™% .

It follows that {E"} and {H"} define Cauchy sequences in L,(2) . Hence,

limit fields
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E=UmE", H=UmH" (in L,(a))
n-»% n-»o

exist because LZ(Q) is complete. Now, En and H" define strict solutions
with source fields In, k" . Hence, by Lemma 3, E" and H" define solutions
with finite energy; i.e., identities (4.2) hold with E" for E, H" for H ,

]n for J and K" for K . Making n- ® in these identities gives the same
identities for the limit fields, since all the fields converge in LZ(Q) . Thus

E, H is a solution with finite energy, and therefore a strict solution (by Lemma 3)

having the prescribed source fields J, K which proves Theorem 2.
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